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I. Introduction 

The analysis of the behavior of voltages and currents in complex circuits can be simplified 
through the study and understanding of behaviors of more elementary circuits. In this paper we 
will examine the use of graph theory to determine the behavior of voltages and current in 
resistor networks. The main results are based on the theorems and proofs presented in 
“Random Walks and Electrical Resistances in Products of Graphs” by Béla Bollobás and Graham 
Brightwell [[1]]. 

One elementary circuit we will consider is the product of one resistor and six resistors 
connected in a hexagon. This circuit can be represented by the product graph of a six-vertex 
cycle and a two-vertex path, C6 x P2. 

 

 

 

 

 

 

 

 

 

If the edges of the product graph are unit resistors, questions we might ask, for example, are: 
What is the effective resistance between vertices 1 and 4? How does that compare with the 
effective resistance between vertices 1 and 10? While some of the answers may seem intuitive, 
others, as we will see, are more unexpected. 

Chapter II contains definitions and properties related to electrical circuits and explains how they 
can be used to determine effective resistances in a resistor network. Chapter III covers graph 
theory definitions and concepts. In Chapter IV, we present the main results and illustrative 
examples. In Chapter V, we prove the results.  
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II. Basic Electrical Properties 

The electrical properties described in this chapter are some of the more basic elements of 
electrical theory. The interested reader can find additional information in “Electric Circuits” by 
James W. Nilsson [Error! Reference source not found.] and “Random Walks and Electrical 
Resistances” by Peter G. Doyle and J. Laurie Snell [[2]].  

A. Electrical Terminology  

Two basic electrical elements are resistors and resistor networks. 

1. Resistor 
A resistor is a device in an electric circuit with two terminals that impedes current flow. It is 
represented in circuit diagrams by a zig-zag line with its resistance value R. 
 
 
 

2. Resistor Network 
A resistor network is an electrical circuit consisting of a set of connected resistors. Any point 
where two or more terminals meet is called a node. Here are some typical examples: 

 
 
 
 
 
 
 
 
 

R 
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B. Electrical Laws 

Three of the most fundamental relationships in electricity are described by Ohm’s law and 
Kirchoff’s current and voltage laws. These rules are used to determine energy supply and 
dissipation in a resistor network. 

1. Ohm’s Law 
Ohm’s Law describes the relationship between the voltage drop V across a resistor R and 
the current I flowing through the resistor. 
 

V = IR 
 

2. Kirchoff’s Current Law 
Kirchoff’s Current Law is a description of how current is distributed at the node in an 
electrical circuit. It states that the algebraic sum of all the currents at any node in a circuit 
equals zero, or equivalently, that the current flowing out of a node is equal to the current 
flowing into it. 
 
       =       

 is = ib + ic + id 

3. Kirchoff’s Voltage Law 
Kirchoff’s Voltage Law is a description of how voltage is distributed within a closed path of 
an electrical circuit. It states that the algebraic sum of all the voltages around any closed 
path in a circuit equals zero, or equivalently, that the sum of voltage drops around a closed 
path within a circuit is equal to the sum of the applied voltages. 
 
 
       =      

 

 vs = v1 + v2 + v3 

4. Conservation of Energy: Dissipation and Supply 
A voltage applied between nodes a and b in a resistor network establishes voltages vx and vy 
at the terminals of each resistor Rxy and a current ixy flowing through the resistor. The energy 
dissipated by the resistor is 

ixy
2Rxy, 

 
By Ohm’s Law, the energy dissipated by a resistor of unit resistance, Rxy = 1, is equivalent to 

ixy(vx – vy) = 
        

 
(vx – vy) = (vx – vy)

2. 

Thus, the total energy dissipation in a resistor network is Ed = ½      (vx – vy)
2. We multiply 

by ½ since the energy dissipated by each resistor is counted twice as Rxy and as Ryx. 

If we apply a voltage from a source such as a battery that establishes voltages va and vb at 
nodes a and b in the network the energy supplied to the network is Es = (va – vb)ia, where ia = 
      . 

ic 

is 

ib 

id 

+ 
- vS 

v1 

v2 

v3 

Rxy 
vy vx 

ixy 

V + – 

I 
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By the conservation of energy, the energy supplied and the energy dissipated must be equal. 
So, if we let vb = 0, then we have 

vaia = (va – vb)ia = Es = Ed = ½      (vx – vy)
2 = ½      ixy

2Rxy. 

Refer to Doyle & Snell [[2], p. 61] for a proof of the conservation of energy.  
 

C. Circuit Analysis 

Ohm’s law and Kirchoff’s current and voltage laws are essential in analysis of electrical circuits. 
For example, we can use them to analyze effective resistance, transformations, and energy of an 
electrical circuit. 

1. Effective Resistance 
Effective resistance is the voltage drop across a circuit divided by the total current through 
the circuit.  

Reff = (va – vb)/ia 

For some elementary resistor networks the effective resistance is the equivalent resistance 
of the value of a single resistor that can be used in place of the resistors in the network.  

a) Resistors in Series 
The resistance of two resistors in series is equivalent to the sum of their resistances. 

Reff = R1 + R2 

b) Resistors in Parallel 
The resistance of two resistors in parallel is equivalent to the product of their 
resistances divided by the sum of their resistances. 

 

Reff =   
    

       
 

 

2. Delta-to-Star Transformation 
Another type of equivalent resistance is the transformation of three resistors in a delta-
network (connected to form a triangle) to a star-network (connected to form a Y) by the 
following formulas. 
 
 
 
 
 

RA = 
      

            
 

RB = 
      

            
 

RC = 
      

            
 

 

R1 R2 

RBC 

RAC 
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3. Effective Resistance Application 

One application of equivalent resistance circuits is to determine the effective resistance 
between two nodes of a resistor network. 

For example, suppose we are given a network of resistors of unit resistance connected as 
shown in the first diagram below and we want to know the effective resistance between the 
nodes marked with black dots. We can replace resistances in series, resistances in parallel, 
and delta networks step by step until we are left with one resistance between the two 
nodes. The value of this resistance is the effective resistance between the two nodes.  

To simplify the diagrams, we leave out the resistor symbols. In each step below, we replace 
the resistances shown in red in the first diagram with their equivalent resistances, which are 
shown in the next diagram as dashed lined along with their equivalent resistance values. 
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4. Minimum Energy Dissipation 

To discuss the minimum energy dissipated in a circuit, we need to define a few new terms 
and describe a principle of electrical circuits. 

a) Flow 
If we apply a voltage across nodes labeled a and b in a resistor network so that all 
current enters at a and exits at b and we let x and y be any pair nodes in the circuit, 
then a flow j from a to b is defined as an assignment of numbers jxy to pairs xy such 
that  

(i) jxy = -jyx, 

(ii) Σx jxy = 0 if x   a, b, and 

(iii) jxy = 0 if x and y are not adjacent. 

b) Unit Current Flow and Unit Flow 
If we apply a voltage between nodes a and b with vb = 0 and set va such that the 
current ia flowing into node a is 1, then the current ia flowing through the circuit that 
obeys fundamental electrical laws is called the unit current flow from a to b. Any 
other flow ixy from a to b for which ia = -ib = 1 is called a unit flow. 

Diagram A below shows an example of a unit flow in a resistor network, while 
Diagram B shows the unit current flow for the same network as determined from 
circuit analysis. 

 
 
 
 
 
 
 
 
 

c) Thomson’s Principle 
A basic principle known as Thomson’s Principle states that in an electrical network, 
unit current flow minimizes the energy dissipated over all other unit flows. This 
principle is stated more formally as 

If i is the unit flow from a to b determined by Kirchoff’s Laws, then the energy 
dissipation ½      ixy

2Rxy minimizes the energy dissipation ½      jxy
2Rxy among 

all unit flows j from a to b. 
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For example, if all the resistors have unit resistance, the energy dissipation for the 
unit flow in Diagram A above is 

½ [2(½)2 + 4(¼)2 + 3(1/8)2 + (3/8)2 + 2(5/8)2] = 55/64 = 0.86, 

while the energy dissipation for the unit current flow in Diagram B above is  

½ [2(11/24)
2 + (13/24)

2 + (7/24)
2 + 2(4/24)

2 + (1/24)
2 + 3(5/24)

2 + 2(8/24)
2] = 29/48 = 0.60, 

which is less than that of the unit flow, as expected. Refer to Doyle & Snell [[2], p. 
63] for a proof of Thomson’s Principle.  
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III. Graph Theory Concepts 

In this section we present some basic concepts in graph theory. For more detailed information, 
refer to “Algebraic Graph Theory” by Chris Godsil and Gordon Royle [Error! Reference source 
not found.]. 

A graph G consists of a vertex set V(G) and an edge set E(G), where an edge is an unordered pair 
of distinct vertices of G. In this paper we restrict our attention to simple graphs, those with no 
edges between a vertex and itself, with vertex set V(G) = {1, 2, …, n}. For example, for the 
following definitions, let H be the house graph with V(G) = {1, 2, 3, 4, 5} and E(G) = {(1, 2), (2, 3), 
(2, 5), (3, 4), (4, 5), (5, 1)}, as shown below. 

 

 

 

 

A. Types of Graphs 

Some special types of graphs discussed in this paper are defined here. 

1. Path 
A path Pn is a sequence of n distinct vertices v1, v2, …, vn such that there is an edge between 
vi and vi+1 for i = 1 to n-1.  

For example, in the House graph above, the sequence 1, 2, 5, 4 is a path. 

2. Cycle 
A cycle Cn is a path with v1 = vn. 

For example, in the House graph above, the sequence 2, 3, 4, 5, 2 is a cycle. 

3. Complete Graph 
A complete graph Kn is a graph with n vertices such that there is an edge between each pair 
of vertices. 

For example, in the House graph above, the triangle is a complete graph, while the square is 
not since it does not include the edges (2, 4) and (3, 5). 

B. Distance 

The distance, dxy, between two vertices x and y in a graph X is defined as the length of the 
shortest path from x to y. For example, in the House graph above, d12 = 1, d13 = 2, and d24 = 2. 

C. Connected Graph 

If there is a path between any two vertices of a graph X, then X is connected. For example, the 
House graph above is connected, while the 11-vertex graph shown below is not.  
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D. Product Graph 

The product graph, G x H, of graphs G and H has vertices V(G) x V(H) where two vertices (a, x) 
and (b, y) are adjacent, i.e. there is an edge between them, if either a = b and xy is an edge in H 
or x = y and ab is an edge in G. For example, the product of a cycle graph on 6 vertices and the 
complete graph with two vertices, C6 x K2, has 12 vertices and can be represented as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Thus, we have the following vertices for the product graph G X H: 

1 = (a, x) = ax 7 = (a, y) = ay 
2 = (b, x) = bx 8 = (b, y) = by 
3 = (c, x) = cx 9 = (c, y) = cy 
4 = (d, x) = dx 10 = (d, y) = dy 
5 = (e, x) = ex 11 = (e, y) = ey 
6 = (f, x) = fx 12 = (f, y) = fy 

 

E. Orderable Graph 

A graph H is orderable if there exists a sequence x1, x2, …, xn of the vertices of H such that, for 
any sequence of real numbers a1 ≤ a2 ≤ ∙∙∙ ≤ an and any permutation σ of {1, 2, …, n}, the 
assignment of a1, a2, …, an to the vertices with corresponding indices, x1, x2, …, xn, has the 
property  

    (ai – aj)
2 ≤     (aσi – aσj)

2. 
xixj ∈ E(H) xixj ∈ E(H) 

As we will prove in Lemma 2 and Lemma 3, paths and cycles are orderable graphs. A complete 
graph is also an orderable graph. All vertices are connected to every other vertex, so we will 
have equality: 

    (ai – aj)
2 =     (aσi – aσj)

2. 
xixj ∈ E(H) xixj ∈ E(H) 

If a graph H is orderable, we refer to the sequence x1, x2, …, xn as a voltage ordering for H.  
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Example:  
For the path x1, …, x5 with the real numbers a1, a2, …, a5 = 0, 3, 4, 4, 7 assigned to its vertices 
in increasing order, we have 
 

 

    (ai – aj)
2 = 2(0 – 3)2 + 2(3 – 4)2 + 2(4 – 4)2 + 2(4 – 7)2 = 38, 

xixj ∈ E(H)  

and in a different order, we have 
 

 

    (aσi – aσj)
2 = 2(3 – 4)2 + 2(4 – 0)2 + 2(0 – 7)2 + 2(7 – 4)2 = 150. 

xixj ∈ E(H) 

So, as expected for an orderable graph, we have 

    (ai – aj)
2 = 38 ≤ 150 =     (aσi – aσj)

2. 
xixj ∈ E(H) xixj ∈ E(H) 

In fact, as we will see in the Proof of Theorem 1 using Thomson’s Principle, 38 is the 
minimum value for any ordering of the vertices of this path. 

Example: 
Consider the cycle on five vertices labeled with x1, …, x5, each assigned one of the real 
numbers a1, a2, …, a5 = 0, 3, 4, 4, 7 as shown below. 

For σ = identity permutation, aσi = ai, we have 

 
 
 
 
 

    (aσi – aσj)
2 = 2(4 – 0)2 + 2(7 – 4)2 + 2(4 – 7)2 + 2(3 – 4)2 + 2(3 – 0)2 = 88. 

xixj ∈ E(H)  

For σ = (2 5 4 3) =           
         

 , we have 

 
 
 
 
 

    (aσi – aσj)
2 = 2(3 – 0)2 + 2(4 – 3)2 + 2(4 – 4)2 + 2(4 – 7)2 + 2(7 – 0)2 = 136. 

xixj ∈ E(H)  

In fact, as we will see in the Proof of Theorem 1 using Thomson’s Principle, 88 is the 
minimum value for any ordering of the vertices of this cycle. 
 

  

0 3 4 4 7 

x1 x2 x3 x5 x5 
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IV. Theorems 

We first present the main theorem, Theorem 1, which is a statement about the maximum 
effective resistance between two points in the cross product G x H, where G is any connected 
graph and H is a connected orderable graph. In order to better understand Theorem 1, in 
Corollary 1, Corollary 2, and Corollary 3 we examine examples of simpler cases where H is a 
single path, a single complete graph, or a single cycle. 

The second theorem, Theorem 2, is a more general statement about the maximum effective 
resistance between two points in the cross product G x H, where G is any graph and H is a 
product of paths, complete graphs, and cycles.  

The third theorem, Theorem 3, is a statement about the minimum effective resistance between 
two points in the cross product G x H, where G is any graph and H is a product of complete 
graphs. We follow this theorem with some “non-theorem” comments about the minimum 
effective resistance in other graph products. 

A. Theorem 1 

Suppose we want to determine the maximum effective resistance between two points in a 
product graph. Using the notation R[(a,x),(b,y)] to denote the effective resistance between the 
points (a,x) and (b,y), we have the following theorem. 

Let H be a connected orderable graph, and let x1, …, xn be a voltage ordering of its 
vertices. Let G be any connected graph with distinct vertices a and b. Consider G x H. 
The resistance R[(a,x1),(b,y)] is maximized over vertices y of H at y = xn. 

To better understand this theorem we consider examples of specific cases of Theorem 1 in 
Corollary 1, Corollary 2, and Corollary 3. 

B. Corollary 1 

We will use the fact that paths are orderable to prove the following corollary: 

Let Pn be an n-vertex path with endpoints x and y. Let a and b be any two distinct 
vertices of a graph G. Consider the graph G x Pn. The resistance R[(a,x),(b,v)] is 
maximized over vertices v of Pn at v = y. 

Example: 
Let G be the house graph. Then G x P5 can be depicted as shown below. 
 
 
 

 

 

 

 

 

 

(a,x) 

(b,x) 

(b,y) 

(b,v) 
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Example: 
Let G = C6 and H = P2. Then, label G x H = C6 x P2 as shown below, simplifying vertices of the 
form (a, x) to ax. 

 

 

 

 

 

 
R[(a, x),(b, x)] = R[1,2] = 0.64 vs R[(a, x),(b, y)] = R[1,8] = 0.78 
R[(a, x),(c, x)] = R[1,3] = 0.94 vs R[(a, x),(c, y)] = R[1,9] = 0.98 
R[(a, x),(d, x)] = R[1,4] = 1.04 vs R[(a, x),(d, y)] = R[1,10] = 1.06 

 
These effective resistances can be determined using circuit analysis methods such as those 
described in Chapter II. Alternatively, they can be determined by methods using matrix 
representations of graphs. See Appendix 0. 

C. Corollary 2 

We will use the fact that complete graphs are orderable to prove the following corollary: 

Let Kn be a complete graph with n vertices, and let x and y be any two distinct vertices of 
Kn. Let a and b be any two distinct vertices of a graph G. Consider the graph G x Kn. Then 
R[(a,x),(b,x)] ≤ R[(a,x),(b,y)]. 

Example: 
Let G be the house graph. Then G x K5 can be depicted as below, where, for clarity, only one 
of the five vertices on the house graph is shown connected to a K5 graph. 
 
 

 

 

 

 

 

 

 

 

Example: 
Let G = C6 and H = K2. Then, since K2 = P2, the product graph G x H = C6 x K2 is the same as the 
second example for Corollary 1. 

 

ax 

bx 

by 

cx 

cy 

dx 

dy 
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D. Corollary 3 

We will use the fact that complete graphs are orderable to prove the following corollary: 

Let Cn be a cycle with n vertices, and let x, y, and z be three distinct vertices of Cn with 
d(x,y) ≤ d(x,z). Let a and b be any two distinct vertices of a graph G. Consider the graph G 
x Cn. Then R[(a,x),(b,y)] ≤ R[(a,x),(b,z)]. 

Example: 
Let G = P2 and H = C6. Then, label G x H = P2 x C6 as shown, simplifying vertices of the form (a, 
x) to ax. 

 

 

 

 

 

 
R[(a, x),(b, x)] = R[1,2] = 0.64 vs R[(a, x),(b, y)] = R[1,8] = 0.78 
R[(a, x),(b, x)] = R[1,2] = 0.64 vs R[(a, x),(b, z)] = R[1,9] = 0.98 
R[(a, y),(b, y)] = R[2,8] = 0.58 vs R[(a, y),(b, x)] = R[2,7] = 0.78 

 

E. Theorem 2 

A theorem for determining the maximum effective resistance between two points in a more 
general product graph is the following. 

Let H be an arbitrary product of paths, complete graphs, and cycles. Let x and y be two 
vertices at maximum distance in H. Let a and b be distinct vertices of a graph G, and 
consider G x H. Then R[(a,x),(b,v)] is maximized over vertices v of H at v = y. 

Example: 
G x H = C5 x (P2 x K3) 
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F. Theorem 3 

Suppose we want to determine the minimum effective resistance between two points in a 
product graph.  Then, we have the following theorem for products with complete graphs. 

Let H be an arbitrary product of complete graphs, say Kn x ∙∙∙ x Kp, and let x be a vertex in 
H. Let a and b be distinct vertices of a graph G, and consider G x H. Then R[(a,x),(b,v)] is 
minimized over vertices v of H at v = x. 

Example: 
G x H = C5 x (K2 x K3) 
 
 
 
 
 
 
 
 
 
 
 
 

G. NON-Theorem 

To illustrate that the claims of the three theorems are not as obvious as they may seem, we 
provide an example to show Theorem 3 does not always hold if H is a path instead of a product 
of complete graphs. 

If G x H = P3 x P3 with endpoint x in H, we can show that for some (a,x) and (b,v), R(a,x),(b,v)] is 
not minimized over vertices v of P at v = x.  

Consider the product G x H = P3 x P3 with vertices labeled as shown below and with unit resistors 
between them. 

 

 

 

 

 

 

Since (b, x) appears to be closer to (a, x) than (b, y) is to (a, x), we might expect that R[(a,x),(b,x)] 
≤ R[(a,x),(b,y)]. But, from the circuit analysis example in Chapter II, R[(a,x),(b,x)] = 5/4 = 30/24. 
Following a similar process, as shown in Appendix 0, we can determine that R[(a,x),(b,y)] = 29/24. 
So, we have an example where R[(a,x),(b,v)] is not the minimum at v = x. 
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V. Proofs of Theorems 

Lemma 1 is used to prove Theorem 1 and Lemma 3. Lemma 2 is used to show that Corollary 1 is 
a special case of Theorem 1. Lemma 3 is used to show that Corollary 3 is another special case of 
Theorem 1. Corollary 1, Corollary 2, and Corollary 3 and Theorem 3 are used to prove Theorem 
2 and Theorem 3. 

See Appendix 0 for a flowchart of the dependencies of the results. 

A. Lemma 1 

The following lemma is used in the Proof of Theorem 1 in analyzing the minimum energy of a 
product graph given a particular assignment of voltages to vertices.  

Given any two sequences a1 ≤ a2 ≤ ∙∙∙ ≤ an and b1 ≤ b2 ≤ ∙∙∙ ≤ bn of real numbers, and any 
permutation σ of {1, 2, …, n},  

   
   (ai – bi)

2 ≤    
   (ai – bσi)

2. 

Example: 
Let the sequences a1, a2, a3, a4, a5 = 1, 2, 2, 5, 10 and b1, b2, b3, b4, b5 = 3, 4, 5, 5, 8, and let σ 
= (1 3)(4 5). Then, we have  

   
   (ai – bi)

2 = (1 – 3)2 + (2 – 4)2 + (2 – 5)2 + (5 – 5)2 + (10 – 8)2 = 23, and 

   
   (ai – bσi)

2 = (1 – 5)2 + (2 – 4)2 + (2 – 3)2 + (5 – 8)2 + (10 – 5)2 = 55. 

As expected, the sum when σ is the identity is less than that when σ is not the identity. 

Proof  

Let a1 ≤ a2 ≤ ∙∙∙ ≤ an and b1 ≤ b2 ≤ ∙∙∙ ≤ bn be two sequences of real numbers and let σ be a 
permutation of {1, 2, …, n}. Suppose ai ≤ aj and bk ≤ bl for some i, j, k, l ∈ {1, 2, …, n}. Then  

(aj – ai) (bl – bk) ≥ 0, 

which implies 

aibk + ajbl ≥ aibl + ajbk (1) 

Then, 

(ai – bl)
2 + (aj – bk)

2 = ai
2 + bk

2 + aj
2 + bl

2 – 2(aibl + ajbk) 

 ≥ ai
2 + bk

2 + aj
2 + bl

2 – 2(aibk  + ajbl) by equation (1) 

 = (ai – bk)
2 + (aj – bl)

2. (2) 

If bσ1 ≠ b1, then there exists m ∈ {1, 2, …, n} such that bσm = b1. So, bσm < bσ1. Then, by equation 
(2),  

(a1 – bσ1)
2 + (am – bσm)2 ≥ (a1 – bσm)2 + (am – bσ1)

2. (3) 

So, 

   
   (ai – bσi)

2 = (a1 – bσ1)
2 + (a2 – bσ2)

2 + ··· + (am – bσm)2 + ··· + (an – bσn)2  

 ≥ (a1 – bσm)2 + (a2 – bσ2)
2 + ··· + (am – bσ1)

2+ ··· + (an – bσn)2 by equation (3) 

 = (a1 – b1)
2 + (a2 – bσ2)

2 + ··· + (am – bσ1)
2+ ··· + (an – bσn)2. 
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Similarly, if bσ2 ≠ b2, then there exists p ∈ {1, 2, …, m-1,m+1 …, n} such that bσp = b2. So, bσp < bσ2. 
Then,  

   
   (ai – bσi)

2 = (a1 – b1)
2 + (a2 – bσ2)

2 + ··· + (ap – bσp)2 + ··· + (an – bσn)2  

 ≥ (a1 – b1)
2 + (a2 – bσp)2 + ··· + (ap – bσ2)

2+ ··· + (an – bσn)2 by equation (2) 

 = (a1 – b1)
2 + (a2 – b2)

2 + ··· + (am – bσ1)
2+ ··· + (an – bσn)2. 

Continuing the process for each bσi, we end with  

   
   (ai – bσi)

2 ≥ (a1 – b1)
2 + (a2 – b2)

2 + ··· + (an – bn)2 

 =    
   (ai – bi)

2.   

B. Proof of Theorem 1 

Recall Theorem 1: 

Let H be a connected orderable graph, and let x1, …, xn be a voltage ordering of its 
vertices. Let G be any connected graph with distinct vertices a and b. Consider G x H. 
The resistance R[(a,x1),(b,y)] is maximized over vertices v of H at y = xn. 

Let y be any vertex of H, and consider the voltages in G x H associated with a flow of electric 
current i from (a, x1) at voltage 0 to (b, y) at voltage 1. The energy supplied is the reciprocal of 
the effective resistance between (a, x1) and (b, y).   

Es = (vby - vax1)i = (vby - vax1)
2/Reff = (1 - 0)2/Reff = 1/Reff 

So, R[(a,x1),(b,y)] = Reff = 1/Es = 1/Ed, by the conservation of energy. By Thomson’s Principle, Ed is 
the minimum energy dissipated, so the effective resistance, R[(a,x1),(b,y)], is the maximum.  

To illustrate these ideas, we will let G = House Graph and H = P5. Then, the product House x P5 
can be represented as shown below. 

 

 

 

 

 

 

 

 

vax1=0 

(a,x1) 
(b,x5) 

(b,y) 
vby = 1 
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If we can construct a system of voltages of no greater energy with (a, x1) at voltage 0 and (b, xn) 
at voltage 1, we will have shown that R[(a,x1),(b,xn)] = 1/Energy is at maximized at y = xn. Note 
that we have used the term “network” to refer to an assignment of voltages to vertices that 
obeys the laws of physics (Ohm’s Law, Kirchoff’s Laws, and conservation of energy). We now 
introduce the term “system” to refer to an arbitrary assignment of voltages to vertices. 

 

 

 

 

 

 

 

 

 

Because all current enters the network at vertex (a, x1) and leaves at vertex (b, xn), which are 
assigned voltage of 0 and 1, respectively, the voltages at all other vertices are between 0 and 1. 
For each vertex c of G, consider the n voltages Vc,1 ≤ Vc,2 ≤ … ≤ Vc,n associated with vertices (c,y) 
of the product where y is an integer between 1 and n. We construct our new system by 
rearranging these voltages so that vertex (c, xi) has voltage Vc,i for each c ∈ V(G) and i = 1, …, n, 
that is, by assigning the voltages in ascending order in correspondence with the voltage ordering 
of the orderable graph H. We claim that this new system has no greater energy than before. 

For our House x P5 example, we arrange the voltages Vc,1 , …, Vc,n corresponding to vertices (c, x1), 
…, (c, x5) as shown below. 

 

 

 

 

 

 

 

 

We partition the edge set of G x H as follows. First, we introduce the term “H-edges at c” to 
mean edges of G x H of the form (c, x)(c, y) with xy ∈ E(H) and the term “G-edges at y” to mean 
edges of G x H of the form (c, y)(d, y) with cd ∈ E(G). For each vertex c of G, we consider all the 
H-edges at c together. For each vertex y of H, we consider all the G-edges at y together. This 
accounts for all the edges of the product. 

vax1=0 

current (a,x1) 

(b,x5) 

(b,y) 

vbx5 = 1 

(c,x1) 

(c,x2) 

(c,x5) 

current 
(c,x3) 

(c,x4) 

vcx1 = Vc,1 

vcx2 = Vc,2 

vcx3 = Vc,3 

vcx4 = Vc,4 

vcx5 = Vc,5 

vax1=0 

(a,x1) 

(b,x5) 

(b,y) 

vbxn = 1 
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For our House x P5 example, there are 5 partitions of H-edges at c and 6 partitions of G-edges for 
a total of 11 partitions as shown below. 

 

 

 

 

 

 

 

 

 

H-edge Partitions: 

 

 

 

G-edge Partitions: 

 

 

 

For each vertex c of G (the House graph in our example), the energy arising from the H-edges at 
c (edges in the path P5) has not increased since we have rearranged the voltages according to 
the given voltage ordering, and by the fact that P5 is an orderable graph, we have achieved the 
minimum possible energy from this set of voltages. In our example, we have 

    (Vc,i – Vc,j)
2 ≤     (Vc,σi – Vc,σj)

2. 
xixj ∈ E(H) xixj ∈ E(H) 

For each vertex y of H (the path), the energy arising from the G-edges at y (edges in the house 
graph) is also no greater than before, by Lemma 1, since there is a correspondence between the 
order of the voltages of the vertices (c, y) and the order of the voltages of vertices (d, y) for y = 
x1, x2, …, xn. In our example, the sequences a1 ≤ a2 ≤ ∙∙∙ ≤ an and b1 ≤ b2 ≤ ∙∙∙ ≤ bn are Vc,1 ≤ Vc,2 ≤ ∙∙∙ 
≤ Vc,n and Vb,1 ≤ Vb,2 ≤ ∙∙∙ ≤ Vb,n. Thus, we have 

   
   (Vc,i – Vb,i)

2 ≤    
   (Vc,i – Vb,σi)

2. 

Thus, the total energy of the system is not increased, as required. So, the effective resistance is 
not decreased. Therefore, the effective resistance is at a maximum at y = xn. 

  

vax1=0 

current (a,x1) 

(b,x1) 

(b,x5) 

current H-edges at c 

G-edges at y = x1 

vby = 1 

(c,x1) 

(c,y) 

(c,x5) 

current 
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C. Lemma 2 

Let Pn be the path x1, x2, …, xn on n vertices. The order x1, x2, …, xn is a voltage ordering of the 
vertices of Pn. 

Proof 

We need to show that, for any sequence of real numbers a1 ≤ a2 ≤ ∙∙∙ ≤ an and any permutation σ 
of {1, 2, …, n}, the assignment of a1, a2, …, an to the vertices with corresponding indices, x1, x2, …, 
xn, has the property  

    (ai – aj)
2 ≤     (aσi – aσj)

2. 
xixj ∈ E(Pn) xixj ∈ E(Pn) 

This requires the use of Prim’s Algorithm, but before describing the algorithm, we need to 
define some more terms from graph theory. 

 A weighted graph is a graph with a number assigned to each edge. 

 

 

 

 

A tree is a connected graph with no cycles. 

 

 

 

 

A spanning tree of a graph is a tree that touches all the vertices (so, it only makes sense in a 
connected graph). 

 

 

 

A minimum spanning tree is a spanning tree whose sum of edge weights is as small as 
possible. 

 

 

 

Prim’s Algorithm grows a spanning tree from a single vertex of a connected weighted graph, 
iteratively adding the edge with least weight from a vertex already reached to a vertex not yet 
reached, finishing when all the vertices of X have been reached. (Ties are broken arbitrarily.) 
Prim’s Algorithm produces a minimum-weight spanning tree. For an induction proof of this 
statement, see “Applied Combinatorics” by Alan Tucker [[5]]. 
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The steps for finding a voltage ordering of Pn using Prim’s Algorithm are as follows: 

1. Label the vertices of the complete graph Kn with the numbers a1, a2, …, an. 

2. Label each edge aiaj with the weight (ai- aj)
2. 

3. Color the edge with the smallest weight that is connected to the vertex labeled a1. This 
edge is in the minimum spanning tree. 

4. Color the edge with the smallest weight that is connected to the tree, but has one 
vertex not in the tree. 

5. Repeat Step 4 until all vertices in Kn are included in the tree. 

The minimal spanning tree that Prim’s Algorithm produces will be a path with the sequence x1, 
x2, …, xn of vertices corresponding to the numbers a1, a2, …, an a voltage ordering of that path. 

  

As an example, we find a voltage ordering of P4 for the sequence 1, 2, 4, 7. 

1. Label the vertices of the complete graph K4 with the numbers 1, 2, 4, 7. 

 

 

 

 

2. Label each edge with its weight. 

 

 

 

 

3. Color the edge with weight 1 since it is the edge with smallest weight that is connected 
to the vertex labeled 1. This edge is in the minimum spanning tree. 

 

 

 

 

4. Color the edge with weight 4 since it is the edge with the smallest weight that is 
connected to the tree, but not in the tree. 
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36 
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7 

25 
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4 

36 
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4 

7 

= 

1 

2 

4 
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5. Color one of the edges with weight 9 since they are the edges with the smallest weight 
that is connected to a vertex in the tree, but is not in the tree. 

 

 

 

 
This minimal spanning tree is a path, so labeling  the vertices of path x1, x2, x3, x4 in 
ascending order of the assigned numbers 1,2 4, 7, gives us x1, x2, x3, x4 as a voltage ordering 
of P4. 

D. Proof of Corollary 1 

Since Corollary 1 is a special case of Theorem 1 where the connected orderable graph H is a path 

Pn, its proof follows from the proof of Theorem 1.  

E. Proof of Corollary 2 

Since Corollary 2 is a special case of Theorem 1 where the connected orderable graph H is a 

complete graph Kn, its proof follows from the proof of Theorem 1.  

F. Lemma 3 

Let Cn be the cycle x1, x2, …, xn, x1 on n vertices. The order x1, xn, x2, xn-1, x3, xn-2, …, x⌈n+1/2⌉ is a 
voltage ordering of the vertices of Cn. 

Proof 

Let a1 ≤ a2  ≤ …  ≤ an be numbers, considered as points on the real line. We claim that a cycle 
through these points minimizing the sum of the squares of the edge-lengths,    

   (ai+1 – ai)
2, is 

the one with the edges a1a2, an-1an, and aiai+2 for i = 1, ..., n – 2. For example, for n = 7, we have 

(a)  

 

 

If the ai are not distinct, and since a1 ≤ a2  ≤ …  ≤ an, then aj = aj+1 for some j. Thus, (aj+1 – aj)
2 = 0 

and therefore does not add to the sum of the squares of the edge-lengths. So, we will assume 
the ai are distinct. Any other cycle has one of the following features: 

(b) for some i > 1, ai is adjacent to two vertices aj and ak, with i < j, k; 
For example, the cycle with a2 adjacent to a3 and a5: 

 

 

 

 
(c) for some i < n, ai is adjacent to two vertices aj and ak, with i > j, k; 

For example, the cycle with a5 adjacent to a3 and a2: 

 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

25 

1 9 

9 

4 

36 

1 

2 

4 

7 
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(d) for some i < j < k < l, aial and ajak are both edges of the cycle; 

For example, the cycle with aial = a2a6 and ajak = a3a4: 

 

 

 

If neither (b) nor (c) holds, then, for every 1 < i < n, ai must be adjacent to a vertex aj where i > j 
and a vertex ak where i < k. Then, the cycle can be decomposed into two monotone paths from 
a1  to an, and if either path “jumps” over more than one vertex, then all the vertices inside the 
jump are picked up by the other path, giving case (d). 

 

 

 

It remains to be seen that (b), (c), and (d) all give non-optimal cycles. 

In case (b), there must be some edge of the cycle alam with l < i < m. We now change the cycle by 
replacing edge alam by the path alaiam, and replacing the path ajaiak by the edge ajak.  

In the example for (b) given above, we can replace a1a3 with a1a2a3 and a3a2a5 with a3a5: 

 

 

 

 

 

Both changes decrease the sum of the squares of the edge lengths as we prove below.  

Claim 

For for a ≤ b ≤ c, 
(i) (c – b)2 + (b – a)2 ≤ (c – a)2, and  

(ii)  (c – b)2 ≤ (c – a)2 + (b – a)2. 

Proof 

Let a ≤ b ≤ c. Then,  
 b ≥ a 
 b(c – b) ≥ a(c – b) since c ≥ b 
 bc – b2 ≥ ac – ab 
 bc – b2 + ab ≥ ac 
 -2bc + 2b2 – 2ab ≤ -2ac 
 c2 – 2bc + b2 + b2 – 2ab + a2 ≤ c2 – 2ac + a2 
 (c – b)2 + (b – a)2 ≤ (c – a)2. (A) 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

=l =i =m =k 

a1 a2 a3 a4 a5 a6 a7 
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Further decreasing the left hand side by subtracting (b – a)2 and further increasing the right 
hand side by adding (b – a)2, we get 
 (c – b)2 ≤ (c – a)2 + (b – a)2. (B) 

Equation (A) satisfies (i) and equation (B) satisfies (ii). □ 

If we let a=al, b = ai, and c = am, equation (A) becomes (am – ai)
2 + (ai – al)

2 ≤ (am – al)
2. Thus, in 

replacing edge alam by the path alaiam, we decrease the sum of the squares of the edge lengths. 

If we let a=ai, b = am, and c = ak, equation (B) becomes (ak – am)2 ≤ (ak – ai)
2 + (am – ai)

2. Thus, in 
replacing the path ajaiak by the edge ajak, we also decrease the sum of the squares of the edge 
lengths. 

Case (c) is symmetric. Thus, case (b) and case (c) are not optimal because reconnecting them to 
form case (d) decreases the sum of the squares of the edge-lengths, by the claim above. 

In case (d), deleting the edges aial and ajak from the cycle forms two paths.  These can be 
reconnected to form a cycle either by adding edges aiaj and akal or by adding edges aiak and ajal.  

For the example given above for case (d), 
 
 
 
 
we delete a2a6 and a3a4, 
 
 
 
 
and, since adding a2a3 and a4a6 does not form a cycle, 

 
 
 
we add a2a4 and a3a6. 

 

 
 
This is equivalent to the graph below, which is another case (d) cycle. 

 

 
 
Repeating the process for this (d) cycle, we end with a case (a) cycle. 
 
 

 

Thus, case (d) is not optimal because reconnecting it to form case (a) decreases the sum of the 
squares of the edge-lengths, by Lemma 1. To illustrate the application of Lemma 1, consider the 
following example. 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 

a1 a2 a3 a4 a5 a6 a7 
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Suppose we have the two sequences c1 ≤ c2 and d1 ≤ d2, where 

c1 = a3 = 3, 
c2 = a6 = 6, 
d1 = a4 = 4, and 
d2 = a5 = 5. 

Then,  

(c1 – d1)
2 + (c2 – d2)

2 = (3 – 4)2 + (6 – 5)2 = 2, which is less than 
(c1 – d2)

2 + (c2 – d1)
2 = (3 – 5)2 + (6 – 4)2 = 8. 

Therefore, we have shown that the only cycle through the vertices of Cn that minimizes the sum 
of the squares of the edge-lengths is case (a) with the voltage ordering  

x1, xn, x2, xn-1, x3, xn-2, …, x⌈n+1/2⌉.  

  

G. Proof of Corollary 3 

Since Corollary 3 is a special case of Theorem 1 where the connected orderable graph H is a 

cycle Cn, which is orderable by Lemma 3, its proof follows from the proof of Theorem 1.  

H. Proof of Theorem 2 

Recall Theorem 2: 

Let H be an arbitrary product of paths, complete graphs, and cycles. Let x and y be two 
vertices at maximum distance in H. Let a and b be distinct vertices of a graph G, and 
consider G x H. Then R[(a,x),(b,v)] is maximized over vertices v of H at v = y. 

Let H = H1 x H2 x ∙∙∙ x Hk be a product of paths, cycles, and complete graphs. Let x = (x1, …, xk) and 
y = (y1, …, yk) be vertices at maximum distance in H. Note that xi and yi are at maximum distance 
in Hi for all i. Let v = (v1, …, vk) be any vertex of H. For j = 0, …, k, let vj be the vertex (y1, …, yj, vj+1, 
…, vk), so that v0 = v and vk = y. 

v0 = (v1, v2, v3, …, vk-2, vk-1, vk) = v 

v1 = (y1, v2, v3, …, vk-2, vk-1, vk) 

v2 = (y1, y2, v3, …, vk-2, vk-1, vk) 
   ⋱  
vk-2 = (y1, y2, y3, …, yk-2, vk-1, vk) 

vk-1 = (y1, y2, y3, …, yk-2, yk-1, vk) 

vk = (y1, y2, y3, …, yk-2, yk-1, yk)= y 

We claim that, for each j, R[(a,x),(b,vj-1)] ≤ R[(a,x),(b,vj)]. This implies that R[(a,x),(b,v)] ≤ 
R[(a,x),(b,y)], which is the desired result. 

Note that the only co-ordinate in which the vertices (b, vj-1) and (b, vj) differ is that 
corresponding to Hj. Thus, we may regard the graph G x H as the product (G x H1 x ∙∙∙ x Hj-1, Hj+1 x 
∙∙∙ x Hk) x Hj, and apply Corollary 1, Corollary 2, or Corollary 3, as appropriate, to establish the 
claim. 
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I. Proof of Theorem 3 

Recall Theorem 3: 

Let H be an arbitrary product of complete graphs, say Kn x ∙∙∙ x Kp, and let x be a vertex in 
H. Let a and b be distinct vertices of a graph G, and consider G x H. Then R[(a,x),(b,v)] is 
minimized over vertices v of H at v = x.” 

The proof is similar to that given for Theorem 2.  

Let H = K1 x K2 x ∙∙∙ x Kk be a product of complete graphs. Let x = (x1, …, xk) and y = (y1, …, yk) be 
vertices at maximum distance in H. Note that xi and yi are at maximum distance in Hi for all i. Let 
v = (v1, …, vk) be any vertex of H. For j = 0, …, k, let vj be the vertex (y1, …, yj, vj+1, …, vk), so that v0 
= v and vk = y, as in the proof of Theorem 2. 

We claim that, for each j, R[(a,x),(b,vj-1)] ≤ R[(a,x),(b,vj)]. This implies that R[(a,x),(b,v)] ≥ 
R[(a,x),(b,x)], which is the desired result. 

Note that the only co-ordinate in which the vertices (b, vj-1) and (b, vj) differ is that 
corresponding to Hj. Thus, we may regard the graph G x H as the product (G x K1 x ∙∙∙ x Kj-1, Kj+1 x 
∙∙∙ x Kk) x Kj, and apply Corollary 2 to establish the claim. 
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VI. Summary 

In this paper we used graph theory concepts to learn some of the behaviors of voltages and 
currents in several resistor networks. This understanding of the behavior in elementary circuits 
can lead to insights into the behavior in more complex circuits. 

We proved a statement about the maximum effective resistance between two points in the 
cross product G x H, where G is any connected graph and H is a connected orderable graph. We 
also proved a more general statement about the maximum effective resistance between two 
points in the cross product G x H, where G is any graph and H is a product of paths, complete 
graphs, and cycles. We showed that although we could make a statement about the minimum 
effective resistance between two points in the cross product G x H, where G is any graph and H 
is a product of complete graphs, the statement does not always hold if H is not a product of 
complete graphs. 

We used circuit analysis methods to determine voltages and currents that exhibit minimum 
energy, and thus maximum effective resistances, between two nodes. An alternative method 
that avoids complicated circuit analysis uses various matrices to represent resistor networks 
that can be interpreted as product graphs. A description of this method and examples are 
provided in the appendix. 

Some other questions to consider are: What graphs, in addition to paths, cycles, and complete 
graphs, are orderable? Can we make similar statements about any unorderable graphs? Are 
these or similar results applicable to electrical properties in addition to effective resistance and 
energy? What else can these results tell us about the flow of electric current in a circuit? These 
and many other questions are left to the reader for further exploration. 
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Appendix 
 

A. Circuit Analysis for P3 xP3 

Below are the circuit analysis steps for determining the effective resistance between the two 
marked vertices. 
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B. Dependency Chart for Proofs of Results 
 

  

Lemma 1 

∑(ai –bi)
2 ≤ ∑(ai –bσi)

2 

Lemma 3 

Cn is an orderable graph 
with voltage ordering 

x1, xn, …, x(n+1)/2 

Theorem 1 

G x H = connected x connected, & orderable 

Reff maximized 

Corollary 3 

G x H = any x Cn 

d(x, y) ≤ d(x, z) 

Ry ≤ Rz  

Corollary 1 

G x H = any x Pn 

Reff maximized 

 

Corollary 2 

G x H = any x Kn 

Rx ≤ Ry  

Theorem 2 

G x H = any x         

Reff maximized 

 

Theorem 3 

G x H = any x     

Reff minimized 

 

NON-Theorem 

G x H = any x Pm 

Reff not minimized 
 

Lemma 2 
Pn is an orderable graph 

with voltage ordering 
x1, x2, …, xn 
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C. Alternative Method for Determining Effective Resistances in a Graph 

Effective resistances in a resistor network can be determined from an analysis of relationships 
between matrix representations of product graphs.  First, we define some matrices that we will 
use to represent product graphs. 

1. Adjacency Matrix 
The adjacency matrix A of the graph G is the n x n matrix, where aij = 1 if there is an edge 
between vertex i and vertex j and aij = 0 otherwise.  For example,  

 

AH =   

 

 

 

 

 

 

A(C6 x K2) =   

 

 

 

 

 

 

 

 

2. Signed Edge-Vertex Adjacency Matrix 
The signed edge-vertex adjacency matrix A of the graph G is the n x n matrix with rows 
indexed by edges and columns indexed by vertices, where U(i,j), k = 1 if i = k, U(i,j), k = -1 if j = k, 
and U(i,j), k = 0 otherwise.  For example,  

 

UH =   

 

 

 

 

 

 
1 2 3 4 5 

1 0 1 0 0 1 

2 1 0 1 0 1 

3 0 1 0 1 0 

4 0 0 1 0 1 

5 1 1 0 1 0 

 
1 2 3 4 5 6 7 8 9 10 11 12 

1 0 1 0 0 0 1 1 0 0 0 0 0 
2 1 0 1 0 0 0 0 1 0 0 0 0 
3 0 1 0 1 0 0 0 0 1 0 0 0 
4 0 0 1 0 1 0 0 0 0 1 0 0 
5 0 0 0 1 0 1 0 0 0 0 1 0 
6 1 0 0 0 1 0 0 0 0 0 0 1 
7 1 0 0 0 0 0 0 1 0 0 0 1 
8 0 1 0 0 0 0 1 0 1 0 0 0 
9 0 0 1 0 0 0 0 1 0 1 0 0 

10 0 0 0 1 0 0 0 0 1 0 1 0 
11 0 0 0 0 1 0 0 0 0 1 0 1 
12 0 0 0 0 0 1 1 0 0 0 1 0 

  
1 2 3 4 5 

1, 2 1 -1 0 0 0 

2, 3 0 1 -1 0 0 

3, 4 0 0 1 -1 0 

4, 5 0 0 0 1 -1 

1, 5 1 0 0 0 -1 

2, 5 0 1 0 0 -1 

2 

1 

3 4 

5 

H 

1 

2 

3 4 

5 

6 

7 

8 

9 10 

11 

12 C6 x K2 

2 

1 

3 4 

5 

H 
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U(C6 x K2) =   

 

  
1 2 3 4 5 6 7 8 9 10 11 12 

1, 2 -1 1 0 0 0 0 0 0 0 0 0 0 

2, 3 0 -1 1 0 0 0 0 0 0 0 0 0 

3, 4 0 0 -1 1 0 0 0 0 0 0 0 0 

4, 5 0 0 0 -1 1 0 0 0 0 0 0 0 

5, 6 0 0 0 0 -1 1 0 0 0 0 0 0 

6, 1 1 0 0 0 0 -1 0 0 0 0 0 0 

1, 7 -1 0 0 0 0 0 1 0 0 0 0 0 

2, 8 0 -1 0 0 0 0 0 1 0 0 0 0 

3, 9 0 0 -1 0 0 0 0 0 1 0 0 0 

4, 10 0 0 0 -1 0 0 0 0 0 1 0 0 

5, 11 0 0 0 0 -1 0 0 0 0 0 1 0 

6, 12 0 0 0 0 0 -1 0 0 0 0 0 1 

7, 8 0 0 0 0 0 0 -1 1 0 0 0 0 

8, 9 0 0 0 0 0 0 0 -1 1 0 0 0 

9, 10 0 0 0 0 0 0 0 0 -1 1 0 0 

10, 11 0 0 0 0 0 0 0 0 0 -1 1 0 

11, 12 0 0 0 0 0 0 0 0 0 0 -1 1 

12, 7 0 0 0 0 0 0 1 0 0 0 0 -1 

 

3. Degree Matrix 
The degree matrix D of the graph G is the n x n diagonal matrix, where dii =      

 
   . That is, 

each diagonal entry dii is equal to the number of edges incident with vertex i. For example,  

 

DH =   

 

 

 

 

 

 

 

2 0 0 0 0 

0 3 0 0 0 

0 0 2 0 0 

0 0 0 2 0 

0 0 0 0 3 

2 

1 

3 4 

5 

H 

1 

2 

3 4 

5 

6 

7 

8 

9 10 

11 

12 C6 x K2 
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D(C6 x K2) =   

 

 

 

 

 

 

 

 

 

4. Laplacian Matrix  
The Laplacian matrix L of the graph G is defined as L = UTU. For example, 

LH = UH
TUH 

 

 =  

 

 

 

 

 =  

 

 

 

 
An equivalent alternative definition for the Laplacian matrix is L = D – A. Thus, it is an n x n 
matrix where 

Lij = -1, if there is an edge between vertex i and vertex j, 
Lij = degree of i, if i=j, and 
Lij = 0, otherwise.  

  

 
1 2 3 4 5 6 7 8 9 10 11 12 

1 3 0 0 0 0 0 0 0 0 0 0 0 
2 0 3 0 0 0 0 0 0 0 0 0 0 
3 0 0 3 0 0 0 0 0 0 0 0 0 
4 0 0 0 3 0 0 0 0 0 0 0 0 
5 0 0 0 0 3 0 0 0 0 0 0 0 
6 0 0 0 0 0 3 0 0 0 0 0 0 
7 0 0 0 0 0 0 3 0 0 0 0 0 
8 0 0 0 0 0 0 0 3 0 0 0 0 
9 0 0 0 0 0 0 0 0 3 0 0 0 

10 0 0 0 0 0 0 0 0 0 3 0 0 
11 0 0 0 0 0 0 0 0 0 0 3 0 
12 0 0 0 0 0 0 0 0 0 0 0 3 

1 0 0 0 1 0 

-1 1 0 0 0 1 

0 -1 1 0 0 0 

0 0 -1 1 0 0 

0 0 0 -1 -1 -1 

1 -1 0 0 0 

0 1 -1 0 0 

0 0 1 -1 0 

0 0 0 1 -1 

1 0 0 0 -1 

0 1 0 0 -1 

2 -1 0 0 -1 

-1 3 -1 0 -1 

0 -1 2 -1 0 

0 0 -1 2 -1 

-1 -1 0 -1 3 

x 

1 

2 

3 4 

5 

6 

7 

8 

9 10 

11 

12 C6 x K2 
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For example,  

 

LH =   

 

 

 

For a proof of the equivalency of the two definitions, refer to lecture notes by Daniel A. 
Speilman [6] and Error! Reference source not found.. 
 

L(C6 x K2) = 
 
 
 
 
 
 
 
 
 
 
 
 

5. Relationships between Graph Theory and Resistor Networks 
To relate electrical properties of a resistor network to properties of a graph, we can let each 
edge (a, b) in a graph represent a resistor of unit resistance and make the following 
definitions. 

i(a,b) = the current flowing through the edge (a, b) from a to b 

v = (v1, v2, …, vn) = the vector of voltages at each vertex (node) 

i = the vector of currents through each edge (resistor) 

iext(a) = the current entering the graph through vertex (node) a 

Then, from Ohm’s Law, V = IR, the current across a resistor R with unit resistance and 
terminals a and b is  

i(a,b) = (vb - va)/R = (vb - va)/1 = vb - va, and  

iext(a) =         for all b such that (a,b) is in the edge set of the graph. 

Also, we can write the vector i in matrix form as 

i = Uv, 
where U is the signed edge-vertex adjacency matrix. 

  

2 -1 0 0 -1 

-1 3 -1 0 -1 

0 -1 2 -1 0 

0 0 -1 2 -1 

-1 -1 0 -1 3 

2 0 0 0 0 

0 3 0 0 0 

0 0 2 0 0 

0 0 0 2 0 

0 0 0 0 3 

0 1 0 0 1 

1 0 1 0 1 

0 1 0 1 0 

0 0 1 0 1 

1 1 0 1 0 

 
1 2 3 4 5 6 7 8 9 10 11 12 

1 3 -1 0 0 0 -1 -1 0 0 0 0 0 
2 -1 3 -1 0 0 0 0 -1 0 0 0 0 
3 0 -1 3 -1 0 0 0 0 -1 0 0 0 
4 0 0 -1 3 -1 0 0 0 0 -1 0 0 
5 0 0 0 -1 3 -1 0 0 0 0 -1 0 
6 -1 0 0 0 -1 3 0 0 0 0 0 -1 
7 -1 0 0 0 0 0 3 -1 0 0 0 -1 
8 0 -1 0 0 0 0 -1 3 -1 0 0 0 
9 0 0 -1 0 0 0 0 -1 3 -1 0 0 

10 0 0 0 -1 0 0 0 0 -1 3 -1 0 
11 0 0 0 0 -1 0 0 0 0 -1 3 -1 
12 0 0 0 0 0 -1 -1 0 0 0 -1 3 

- = 
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For example, for the house graph, if v = (0, 1, 1, -2, 1)T, then  

  

 

 

 

 

i = Uv = 

 

 

 

 

 

iext(a) =         =      –      = UTi = UTUv 

Since L = UTU, we have  

iext(a) =  v 

Then, if L is invertible, we can solve for v. If L is not invertible, we solve instead by 
multiplying both sides on the left by the pseudo-inverse of L, where the pseudo-inverse of a 
symmetric matrix is the inverse on the range of the matrix. For a matrix L with eigenvalues 
γ1, …, γn and corresponding normalized eigenvectors u1, …, un, the pseudo-inverse, L+, is 
defined as 

L+ =              uiui
T. 

For example, for L(C6 x K2), one eigenvalue with  corresponding normalized eigenvector is  

γ1 = 4; u1 = (0.29, -0.29, 0.29, -0.29, 0.29, -0.29, 0.29, -0.29, 0.29, -0.29, 0.29, -0.29), 

so that 

(1/γ)1(u1·u1
T) =  

 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 

-0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 -0.02 0.02 

1 -1 0 0 0 

0 1 -1 0 0 

0 0 1 -1 0 

0 0 0 1 -1 

1 0 0 0 -1 

0 1 0 0 -1 

0 

1 

1 

-2 

1 

-1 

0 

3 

-3 

1 

2 

= 

2 

1 

3 4 

5 

v1=0 

v2=1 

v3=1 v4=-2 

v5=1 
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Adding these matrices for the nonzero eigenvectors, 4, 2, 6, 1, 1, 5, 5, 3, 3, 3, and 3, we have 
the pseudo-inverse matrix 

L+ = 

0.39 0.07 -0.08 -0.13 -0.08 0.07 0.10 0.00 -0.10 -0.14 -0.10 0.00 

0.07 0.39 0.07 -0.08 -0.13 -0.08 0.00 0.10 0.00 -0.10 -0.14 -0.10 

-0.08 0.07 0.39 0.07 -0.08 -0.13 -0.10 0.00 0.10 0.00 -0.10 -0.14 

-0.13 -0.08 0.07 0.39 0.07 -0.08 -0.14 -0.10 0.00 0.10 0.00 -0.10 

-0.08 -0.13 -0.08 0.07 0.39 0.07 -0.10 -0.14 -0.10 0.00 0.10 0.00 

0.07 -0.08 -0.13 -0.08 0.07 0.39 0.00 -0.10 -0.14 -0.10 0.00 0.10 

0.10 0.00 -0.10 -0.14 -0.10 0.00 0.39 0.07 -0.08 -0.13 -0.08 0.07 

0.00 0.10 0.00 -0.10 -0.14 -0.10 0.07 0.39 0.07 -0.08 -0.13 -0.08 

-0.10 0.00 0.10 0.00 -0.10 -0.14 -0.08 0.07 0.39 0.07 -0.08 -0.13 

-0.14 -0.10 0.00 0.10 0.00 -0.10 -0.13 -0.08 0.07 0.39 0.07 -0.08 

-0.10 -0.14 -0.10 0.00 0.10 0.00 -0.08 -0.13 -0.08 0.07 0.39 0.07 

0.00 -0.10 -0.14 -0.10 0.00 0.10 0.07 -0.08 -0.13 -0.08 0.07 0.39 

 

 

 

 

 

 

 

To determine the effective resistance R(1, 10), between vertices 1 and 10, we let i1 = -1 and 
i10 = 1 so that 

iext = (-1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0). 

Then, 

v = L+iext = (-0.53, -0.17, 0.08, 0.23, 0.08, -0.17, -0.23, -0.08, 0.17, 0.53, 0.17, -0.08). 

Thus, we have 

R(1, 10) =    
   

     

 = (-0.53)2 + (-0.17)2 + 0.082 + 0.232 + 0.082 + (-0.17)2 + (-0.23)2 + (-0.08)2 + 0.172 
+ 0.532 + 0.172 + (-0.08)2 

 = 1.06. 
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